
Page 2 Oeconomics of Knowledge, Volume 1, Issue 1, 3Q 2009

The Impact of Parallel Processing on Operating

Systems

Felician ALECU, PhD, University Lecturer

Department of Economic Informatics

Academy of Economic Studies, Bucharest, Romania

E-mail: alecu[at]ase[dot]ro; Web Page: http://alecu.ase.ro

Abstract: The base entity in computer programming is the process or
task. The parallelism can be achieved by executing multiple
processes on different processors. Distributed systems are
managed by distributed operating systems that represent
the extension for multiprocessor architectures of
multitasking and multiprogramming operating systems.

Keywords: parallel processing, operating systems, process, thread

1. Introduction

A parallel computer is a set of processors that are able to work

cooperatively to solve a computational problem. Based on this definition,
a parallel computer could be a supercomputer with hundreds or

thousands of processors or could be a network of workstations.

Concurrency becomes a fundamental requirement for algorithms
and programs. A program has to be able to use a variable number of

processors and also has to be able to run on multiple processors
computers architectures.

According to Tanenbaum, a distributed system is a set of
independent computers that appear to the user like a single one. So, the

Page 3 Oeconomics of Knowledge, Volume 1, Issue 1, 3Q 2009

computers have to be independent and the software has to hide
individual computers to the users. MIMD computers and workstations

connected through LAN and are examples of distributed systems.

The main difference between parallel systems and distributed

systems is the way in which these systems are used. A parallel system
uses a set of processing units to solve a single problem. A distributed

system is used by many users together.

2. Processes and Threads

 The process (or task) is the base entity in computers programming.
The concept is taken from uniprocessor systems sequential programming.

A process is a dynamic entity and represents an execution instance of a
code segment. A process has its own status and data. The parallelism can

be achieved by executing multiple processes on different processors.

 Processes can be found in all operating systems

(multiprogramming, multitasking, parallel and distributed).

 When using a RUN command on an executable file, a process is
created by the operating system. The process will receive a process ID –

a unique number that will identify the process in the system. Every
process has its own virtual addresses space representing the range of

addresses that can be accessed. A process cannot access other process
addresses space.

The addresses space contains program text segment, data segment
and stack segment. The text segment consists of program executable

text and is shared by multiple processes. A process can read from text
segment but is not allowed to write or to change the content of this

segment. The next segment is data segment. It stores static and
dynamic allocated data. This segment is not shared and cannot be

accessed by other processes. The stack segment contains the process
stack and is not shared.

 The process execution context is formed from process segments

and process resources (opened files, synchronization objects, working
folder)

 A lot of operating systems are implementing a virtual memory

Page 4 Oeconomics of Knowledge, Volume 1, Issue 1, 3Q 2009

mechanism for loading just a part of a process addresses space into the
physical memory. The virtual memory mechanism can use paging,

swapping or a combination of these methods.

2.1. Process States

From the operating system point of view, a process can be in one

of the following states:

Dormant the process is not known by the operating system

 because it was not created yet. Every program

 not executed is in dormant state.

Ready to run all resources needed are allocated to the process

 except processor. The operating system
 scheduler selects one ready to run process at a t

 ime and executes it.

Execution the process has allocated all resources needed,

 including processor. Only one process at a time
 can be in this state. The executed process can

 request a service from the operating system like
 an input/output operation or a synchronizing

 operation. In such a case, the operating system
 suspends current process.

Suspended a suspended process is waiting for an event, like
 a synchronization signal. Suspended processes

 are not competing for execution until the event is

 arising. At this moment, the operating system
 changes the process state to ready to run. The

 scheduler will select the process and will execute
 it imediatelly.

The operating system can switch between two processes. The

operation is named process switch and is requested by the operating
system only. Process switch is a complex operation with a significant

overhead that can affect system performance.

Page 5 Oeconomics of Knowledge, Volume 1, Issue 1, 3Q 2009

2.2. Threads

 A thread is a software method used to reduce the process switch

overhead that affects the system performance. A thread is a lighter
process with a simplified status. In multithreading systems, a thread is

the base scheduling entity. It has its own stack and hardware status. The
thread switch implies saving and retrieving of hardware status and stack.

The thread switch between threads of the same process is fast and
efficient because all other resources, except processor, are managed by

the parent process. Unfortunately, the thread switch between threads of

different processes involves process switch overhead.

 Another execution entity used by operating system derived from

UNIX is the lightweight process. A lightweight process has a minimal
state (hardware status and stack) and shares all parent process

resources except processor. Lightweight processes are implemented in
IRIX operating system for Silicon Graphics multiprocessor workstations

and in DYNIX operating system running on Sequent Symmetry
multiprocessors.

2.3. Processes and Threads Creation

 A process can be created dynamically by another running process
using the fork operating system function. A new child process is created

when invoking fork function.

 The fork operation is used to divide a program in two sequences

that can be run in parallel. The child process will execute a program

segment and its parent will execute the other segment. Child and parent
processes are executed from the same text segment. The child process,

at creation time, receives a copy of parent data segment.

 Using the exec operating function, it is possible to change the text

segment of the child process. The parent and child processes will have

different text and data segments.

 The parent process can be forced to wait for child process

execution end using the join function.

 In UNIX, a process is identified by a process identifier (PID). The

process identifier is a unique number in the system. Two processes will

Page 6 Oeconomics of Knowledge, Volume 1, Issue 1, 3Q 2009

have different values for process identifier.

 Fork function creates a new process in UNIX operating system. The

child process receives a copy of parent memory and shared access to all
parent opened files. So, the child process will have its own data and

stack segments but will be executed from parent text segment.

 Exec function can be used in order to change the text segment for

the child process. In such a way, parent and child processes will be
executed from different text segments. Exec function arguments are the

file that will be executed by the child process and command line

arguments of this file.

 Wait function forces the parent to wait for child processes execution

end. In some UNIX systems, fork and exec functions are grouped

 Windows operating systems are thread oriented and they support

multiprocessor shared memory architecture. The elementary allocation
entity in Windows is the thread. Every process contains at least one

thread (named main thread) and can create new threads that will share
parent address space and resources (files, synchronization objects).

 Programmers can access operating system functions through API
interface (Application Programming Interface). A process can create a

new child process using CreateProcess function. The result of using
CreateProcess function is equivalent with using fork and exec

combination in UNIX: a new process with a new text segment is created.
The executable file that will be executed by the child process is passed to

the function as parameter with command line arguments, if any.

 If the child process successfully created, the function returns
boolean value TRUE, otherwise the returned value will be FALSE. A new

thread can be created using CreateThread function. Before using the
function we have to define the function to be executed by the new

thread. This function will be passed as a parameter to CreateThread.

3. Distributed operating systems

 A distributed operating system is the extension for multiprocessor
architectures of multitasking and multiprogramming operating systems.

Page 7 Oeconomics of Knowledge, Volume 1, Issue 1, 3Q 2009

 Multitasking operating systems can execute concurrently multiple
processes on single processor computers using resources sharing. A

running process is not allowed to access or to destroy another process
data.

Multiprogramming operating systems supports multitasking and
have the ability to protect memory and to control concurrent processes

access to shared resources. A multiprogramming operating system is also
a multitasking operating system.

A distributed system is a set of computers that communicate and

collaborate each other using software and hardware interconnecting
components. Multiprocessors (MIMD computers using shared memory

architecture), multicomputers connected through static or dynamic
interconnection networks (MIMD computers using message passing

architecture) and workstations connected through local area network are
examples of such distributed systems.

A distributed system is managed by a distributed operating system.
A distributed operating system manages the system shared resources

used by multiple processes, the process scheduling activity (how
processes are allocating on available processors), the communication and

synchronization between running processes and so on.

Multiprocessors are known as tightly coupled systems and

multicomputers as loosely coupled systems.

The software for parallel computers could be also tightly coupled or

loosely coupled. The loosely coupled software allows computers and

users of a distributed system to be independent each other but having a
limited possibility to cooperate. An example of such a system is a group

of computers connected through a local network. Every computer has its
own memory, hard disk. There are some shared resources such files and

printers. If the interconnection network broke down, individual computers
could be used but without some features like printing to a non-local

printer.

At the opposite side is tightly coupled software. If we use a

multiprocessor in order to solve an intensive computational problem,
every processor will operate with a data set and the final result will be

obtained combining partial results. In such a case, an interconnection
network malfunction may result in the incapacity of the computer to

Page 8 Oeconomics of Knowledge, Volume 1, Issue 1, 3Q 2009

solve the problem.

Combining loosely coupled software and tightly coupled hardware

and software we can identify four distributed operating systems
categories. The loosely coupled software and tightly coupled hardware

case is not met in practice and therefore will not be covered below.

3.1. Network Operating systems

 Network operating systems represent the loosely coupled hardware

and loosely coupled software case. A typical example of such a system is

a set of workstations connected together through a local area network
(LAN).

Every workstation has its own operating system. Every user has its
own workstation in exclusive use. A user can execute a login command in

order to connect to another station and also can access a set of shared
files maintained by a workstation named file server.

There are only a few processing requirements at system level.
Processes executed over the network do not need to synchronize.

The network operating system has to manage individual
workstations and file servers and has to assure the communication

between them. For this reason, workstations do not need to use the
same operating system.

3.2. Real Distributed Operating Systems

 A real distributed operating system is the case of tightly coupled

software used on a loosely coupled hardware.

 Because the interconnection network is transparent for the users,

the set of computers appears like a single multitasking system and not
like a set of independent computers.

 The computers appear to the users like a virtual uniprocessor or
like a single system image. This is why the users don’t have to be

concerned by the number of computers from the network. No system
available on the market today entirely fulfills this requirement.

 All computers from the network use the same operating system.

Page 9 Oeconomics of Knowledge, Volume 1, Issue 1, 3Q 2009

The same operating system kernel will run on every individual computer.
The local kernel will manage local resources like virtual memory and

process scheduling.

A process has to be able to communicate with any other process,

no matter if the second process is running on the same computer or on
different one. This is why the operating system has to use the same

system calls routines for all computers. The operating system has also to
use the same file system on all workstations without file name length

limitations. Also, the operating system has to implement files security

and protection policies.

3.3. Multiprocessing Operating Systems

 Multiprocessing operating systems represent the tightly coupled

software and tightly coupled hardware case.

 A multiprocessing operating system is acting like a multitasking

UNIX operating system but there are multiple processors in the system.

 The main characteristic of multiprocessing operating systems is a

single list of ready to run processes used. When a new process is ready
to run it is added to the list located in the shared memory area. The list

can be accessed by any process. When a processor is free, it extracts a
process from the list and executes it.

The operating system has to implement mutual exclusion
mechanisms (semaphores, monitors, locks or events using busy-wait or

sleep-wait protocols) in order to protect the concurrent accesses to the

list from shared memory. So, once a process has exclusive access to the
ready to run processes list, it extracts the first process from the list,

releases the list and executes the process.

 The system also appears as a virtual uniprocessor for users and the

same operating system is executed in every processing unit.

Page 10 Oeconomics of Knowledge, Volume 1, Issue 1, 3Q 2009

References

G. DODESCU Parallel Processing, Economic Publishing House,

Bucharest, 2002

D. GROSS

C.M. HARRIS

Fundamentals of Queuing Theory, Wiley, New

York, 2003

A. SILBERSCHATZ

P.B. GALVIN

G. GAGNE

Operating System Concepts, Wiley, 8 edition, 2009

A. ROBBINS UNIX in a Nutshell, O'Reilly Media, 2008

J. BOYCE Windows 7 Bible, Wiley, 2009

